Examining Plant Physiological Responses to Climate Change through an Evolutionary Lens.

نویسندگان

  • Katie M Becklin
  • Jill T Anderson
  • Laci M Gerhart
  • Susana M Wadgymar
  • Carolyn A Wessinger
  • Joy K Ward
چکیده

Since the Industrial Revolution began approximately 200 years ago, global atmospheric carbon dioxide concentration ([CO2]) has increased from 270 to 401 mL L , and average global temperatures have risen by 0.85°C, with the most pronounced effects occurring near the poles (IPCC, 2013). In addition, the last 30 years were the warmest decades in 1,400 years (PAGES 2k Consortium, 2013). By the end of this century, [CO2] is expected to reach at least 700 mL L, and global temperatures are projected to rise by 4°C or more based on greenhouse gas scenarios (IPCC, 2013). Precipitation regimes also are expected to shift on a regional scale as the hydrologic cycle intensifies, resulting in greater extremes in dry versus wet conditions (Medvigy and Beaulieu, 2012). Such changes already are having profound impacts on the physiological functioning of plants that scale up to influence interactions between plants and other organisms and ecosystems as a whole (Fig. 1). Shifts in climate also may alter selective pressures on plants and, therefore, have the potential to influence evolutionary processes. In some cases, evolutionary responses can occur as rapidly as only a few generations (Ward et al., 2000; Franks et al., 2007; Lau and Lennon, 2012), but there is still much to learn in this area, as pointed out by Franks et al. (2014). Such responses have the potential to alter ecological processes, including species interactions, via ecoevolutionary feedbacks (Shefferson and Salguero-Gómez, 2015). In this review, we discuss microevolutionary and macroevolutionary processes that can shape plant responses to climate change as well as direct physiological responses to climate change during the recent geologic past as recorded in the fossil record. We also present work that documents how plant physiological and evolutionary responses influence interactions with other organisms as an example of how climate change effects on plants can scale to influence higher order processes within ecosystems. Thus, this review combines findings in plant physiological ecology and evolutionary biology for a comprehensive view of plant responses to climate change, both past and present. Due to rapid climate change, plants have become increasingly exposed to novel environmental conditions that are outside of their physiological limits and beyond the range to which they are adapted (Ward and Kelly, 2004; Shaw and Etterson, 2012). Plant migration may not keep pace with the unprecedented rate of current climate change (Loarie et al., 2009); therefore, rapid evolutionary responses may be the major process by which plants persist in the future (Franks et al., 2007; Alberto et al., 2013). In addition, although plants may have evolved physiological plasticity that produces a fitness advantage in novel environments, climate change may be so extreme as to push plants beyond

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary and plastic responses to climate change in terrestrial plant populations

As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate ch...

متن کامل

REVIEWS AND SYNTHESIS Evolutionary and plastic responses to climate change in terrestrial plant populations

As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate ch...

متن کامل

Rapid genetic divergence in response to 15 years of simulated climate change

Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic diverg...

متن کامل

Effects of Climate Change and Drought-Stress on Plant Physiology

Drought is still limited in most crops is produced. Morphological and physiological knowledge to improve drought resistance under drought conditions created problems important is the fact each of these genetic relationships and processes associated with the exact amount of important plant and grain yield is unknown. The other hand, heritability of grain yield under water is reduced. Improve the...

متن کامل

Effects of Climate Change and Drought-Stress on Plant Physiology

Drought is still limited in most crops is produced. Morphological and physiological knowledge to improve drought resistance under drought conditions created problems important is the fact each of these genetic relationships and processes associated with the exact amount of important plant and grain yield is unknown. The other hand, heritability of grain yield under water is reduced. Improve the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 172 2  شماره 

صفحات  -

تاریخ انتشار 2016